NOTE ON MMAT 5010: LINEAR ANALYSIS (2017 1ST TERM)

CHI-WAI LEUNG

1. NORMED SPACES

Throughout this note, we always denote K by the real field R or the complex field C. Let N be the
set of all natural numbers. Also, we write a sequence of numbers as a function z : {1,2,...} — K.

Definition 1.1. Let X be a vector space over the field K. A function || - || : X — R is called a
norm on X if it satisfies the following conditions.
(i) ||z|| > 0 for all x € X and ||z|| =0 if and only if x = 0.
(i) ||ax| = |a|||z|| for alla € K and z € X.
(i) ||z +yll <[zl + [yl for all z,y € X.
In this case, the pair (X, || - ||) is called a normed space.
Also, the distance between the elements x and y in X is defined by ||z — y||.

The following examples are important classes in the study of functional analysis.
Example 1.2. Consider X = K". Put
n
1
lally = (3 1wi) 7 and ol = max o
i=1

for1 <p< oo and x = (z1,...,2,) € K"
Then || - ||, (called the usual norm as p==2) and || - ||« (called the sup-norm) all are norms on K".

Example 1.3. Put
co :={(z(7)) : x(4) € K, lim |x(4)| = 0} (called the null sequnce space)

and
0 :={(z(@)) : (i) € K, sgp |z(7)] < oo}

Then cy is a subspace of £2°. The sup-norm || - || on €>° is defined by
[#]|oc := sup |a(i)]

for x € £*°. Let
coo := {(z(3)) : there are only finitly many x(i)’s are non-zero}.

Also, cop is endowed with the sup-norm defined above is called the finite sequence space.

Example 1.4. For 1 <p < oo, put
= {(x(i) : 2(i) €K, Y |2(i)P < oo}
=1

Also, P is equipped with the norm
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for x € P, Then || - ||, is a norm on P (see [1, Section 9.1]).

Example 1.5. Let C?(R) be the space of all bounded continuous R-valued functions f on R.
Now C*(R) is endowed with the sup-norm, that is,

[/ lloc = sup | f ()]
z€eR

for every f € C*(R). Then |||« is a norm on C*(R).

Also, we consider the following subspaces of C*(X).

Let Cp(R) (resp. C’C(R)) be the space of all continuous R-valued functions f on R which vanish
at infinity (resp. have compact supports), that is, for every € > 0, there is a K > 0 such that
|f(x)| <& (resp. f(x)=0) for all |x| > K.

It is clear that we have Co(R) C Co(R) C C*(R).

Now Cy(R) and C.(R) are endowed with the sup-norm || - ||cc-

Notation 1.6. From now on, (X,|| - ||) always denotes a normed space over a field K.
Forr>0andz € X, let

(i) B(z,r) :={ye X : ||z —y| <r} (called an open ball with the center at x of radius r) and
B*(xz,r):={ye X :0< |z —y| <7}
(i) B(z,r) :={y € X : ||z —y|| < r} (called a closed ball with the center at x of radius ).
Put Bx :={x € X : ||z|]| <1} and Sx := {z € X : ||z|| = 1} the closed unit ball and the unit
sphere of X respectively.

Definition 1.7. Let A be a subset of X.

(i) A point a € A is called an interior point of A if there is r > 0 such that B(a,r) C A. Write
int(A) for the set of all interior points of A.
(ii) A is called an open subset of X if int(A) = A.

Example 1.8. We keep the notation as above.

(i) Let Z and Q denote the set of all integers and rational numbers respectively If 7. and Q both
are viewed as the subsets of R, then int(Z) and int(Q) both are empty.

(ii) The open interval (0,1) is an open subset of R but it is not an open subset of R%. In fact,
int(0,1) = (0,1) if (0,1) is considered as a subset of R but int(0,1) = () while (0,1) is
viewed as a subset of R2.

(iii) Every open ball is an open subset of X (Check!!).

Definition 1.9. We say that a sequence (x,,) in X converges to an element a € X iflim ||z, —al| =
0, that is, for any € > 0, there is N € N such that |z, — al| < e for alln > N.
In this case, (xy,) is said to be convergent and a is called a limit of the sequence (xy,).

Remark 1.10.

(i) If (zy) is a convergence sequence in X, then its limit is unique. In fact, if a and b both are the
limits of (xy,), then we have ||a —b|| < |la — zp|| + ||zn, — b]| = 0. So, ||a — b|| = 0 which implies that
a=b.

From now on, we write lim x,, for the limit of (xy) provided the limit exists.

(ii) The definition of a convergent sequence (x,,) depends on the underling space where the sequence
(zp) sits in. For example, for eachn =1,2..., let x,(i) :=1/i as 1 < i <n and z,(i) =0 as i > n.
Then (x,) is a convergent sequence in £°° but it is not convergent in cyp.



Definition 1.11. Let A be a subset of X.

(i) A point z € X is called a limit point of A if for any € > 0, there is an element a € A such
that 0 < ||z — a|| < e, that is, B*(z,e) N A # 0 for all e > 0.
Furthermore, if A contains the set of all its limit points, then A is said to be closed in X.
(ii) The closure of A, write A, is defined by

A:=AU{z € X :z is a limit point of A}.

Remark 1.12. With the notation as above, it is clear that a point z € A if and only if B(z,7)NA # )
for allr > 0. This is also equivalent to saying that there is a sequence (x,) in A such that z, — a.
In fact, this can be shown by considering r = % form=1,2...

Proposition 1.13. With the notation as before, we have the following assertions.

(i) A is closed in X if and only if its complement X \ A is open in X.

(ii) The closure A is the smallest closed subset of X containing A. The “smallest” in here
means that if F is a closed subset containing A, then A C F.
Consequently, A is closed if and only if A = A.

Proof. If A is empty, then the assertions (i) and (ii) both are obvious. Now assume that A # ().
For part (i), let C = X \ A and b € C. Suppose that A is closed in X. If there exists an element
b e C\int(C), then B(b,r) € C for all r > 0. This implies that B(b,r) N A # @ for all 7 > 0 and
hence, b is a limit point of A since b ¢ A. It contradicts to the closeness of A. So, A = int(A) and
thus, A is open.
For the converse of (i), assume that C' is open in X. Assume that A has a limit point z but z ¢ A.
Since z ¢ A, z € C = int(C) because C is open. Hence, we can find r > 0 such that B(z,r) C C.
This gives B(z,7) N A = (). This contradicts to the assumption of z being a limit point of A. So,
A must contain all of its limit points and hence, it is closed.

For part (i), we first claim that A is closed. Let z be a limit point of A. Let 7 > 0. Then there
is w € B*(z,r) N A. Choose 0 < r; < r small enough such that B(w,r1) C B*(z,r). Since w is a
limit point of A, we have () # B*(w, )N A C B*(z,7) N A. So, z is a limit point of A. Thus, z € A
as required. This implies that A is closed.
It is clear that A is the smallest closed set containing A.
The last assertion follows from the minimality of the closed sets containing A immediately.
The proof is finished. U]

Example 1.14. Retains all notation as above. We have ¢yg = ¢ C £°°.
Consequently, co is a closed subspace of £°° but cog is not.

Proof. We first claim that ¢gg C ¢g. Let z € £°°. It suffices to show that if z € ¢yg, then z € ¢g, that
is, li)m z(i) = 0. Let ¢ > 0. Then there is z € B(z,¢) Ncpo and hence, we have |z(i) — 2(7)| < ¢ for
(] o
all t = 1,2..... Since x € cqg, there is ig € N such that x(i) = 0 for all i > iyp. Therefore, we have
|2(2)] = |2(i) — z(3)| < € for all i > iy. So, z € ¢y as desired.
For the reverse inclusion, let w € ¢y. It needs to show that B(w,r) Ncog # @ for all » > 0. Let
r > 0. Since w € ¢y, there is ig such that |w(i)| < r for all i > iy. If we let (i) = w(i) for 1 <i < g

and x(i) = 0 for i > g, then x € cgp and |7 — || := sup |z(i) — w(i)| < r as required. O
i=1,2...
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